
HOWTO - Enable Nginx Reverse Proxy

Overview
What is the reverse proxy?
Why do we need it?
How does it work?

Installing Nginx
Linux

Centos 6 / RHEL 6
Install the nginx.repo

Centos 6
RHEL 6

Update yum
Install Nginx

Centos 7 / RHEL 7
Create a nginx.repo

Centos 7
RHEL 7

Update Yum
Install Nginx

Windows
Download
Verify Nginx Windows Installation

Configuration
Nginx

BEFORE START
Linux
Windows

SSL Certificates
Certificates and Encodings
X509 File Extensions

Encodings (also used as extensions)
Common Extensions

Configuring Nginx Certs
SSL Ciphers
SSL TLVv1.2 only

Running as a Service
Linux
Windows

HTTP to HTTPs redirection
Reverse Proxy

Listmanager
Disable SSL
HTTP and HTTPs ports

Tests
Application
Rating

Test
Invalidating the Test Cache

Example Configuration
Single file

Overview

What is the reverse proxy?
A reverse proxy server is a type of proxy server that typically sits behind the firewall in a private
network and directs client requests to the appropriate backend server. A reverse proxy provides
an additional level of abstraction and control to ensure the smooth flow of network traffic
between clients and servers, including security, availability, performance and traffic shaping.

Why do we need it?
The LM web server is not able to get an "A" rate on SSL Test Rating and It is caused by LM
doesn't support strong/new ciphers for TLS encrypted connections (HTTPS/SSL). This inability
to handle secure TLS/SSL connections is caused by an incomplete HTTP/HTTPS server
implementation provided by ActiveTCL 1.4/1.5 and OpenSSL 1.0.2u.

How does it work?
As we can see at "​What is the Reverse Proxy​" topic, it will work in front of the current LM web
server, forcing all HTTP traffic be redirected to HTTPS and using just the LM HTTP
implementation to avoid over-heading and improve performance. It will also use all new and well
secured TLSv1.2 cyphers to provide an "A" rate on SSL implementation.

It will be implemented by a ​Nginx​ instance listening on HTTP (TCP 80) and HTTPS (TCP 443)
ports all the internet requests and then mediating all connections to LM HTTP server (TCP 8080
- if they are running on the same server).

Nginx will provide all needed configuration and infrastructure to support an "A" rate.

Installing Nginx
Nginx is an extremely high performance web server which has the ability to handle thousands of
requests per second with little hardware requirements. It can be installed on any operating
system and it comes as an open source application as well.

PLEASE USE NGINX VERSION >= 1.16 (WE WILL USE 1.18 for this HOWTO).

Linux

Centos 6 / RHEL 6

Install the nginx.repo

Centos 6
Run these commands:
wget

http://nginx.org/packages/centos/6/noarch/RPMS/nginx-release-centos-6-0.el

6.ngx.noarch.rpm

rpm -ivh nginx-release-centos-6-0.el6.ngx.noarch.rpm

https://nginx.org/en/
http://nginx.org/packages/centos/6/noarch/RPMS/nginx-release-centos-6-0.el6.ngx.noarch.rpm
http://nginx.org/packages/centos/6/noarch/RPMS/nginx-release-centos-6-0.el6.ngx.noarch.rpm

RHEL 6

Run these commands:
wget

http://nginx.org/packages/rhel/6/noarch/RPMS/nginx-release-rhel-6-0.el6.ng

x.noarch.rpm

rpm -ivh nginx-release-rhel-6-0.el6.ngx.noarch.rpm

Update yum
Run command:
$ yum update

Install Nginx
Run command:
$ yum install nginx

Centos 7 / RHEL 7

Create a nginx.repo
Run command:
$ vi /etc/yum.repos.d/nginx.repo

Centos 7

Paste this at /etc/yum.repos.d/nginx.repo:

[nginx]
name​=​nginx repo
baseurl​=​http://nginx.org/packages/mainline/centos/7/$basearch/
gpgcheck​=​0
enabled​=​1

RHEL 7

Paste this at /etc/yum.repos.d/nginx.repo:

[nginx]
name​=​nginx repo
baseurl​=​http://nginx.org/packages/mainline/rhel/7/$basearch/
gpgcheck​=​0
enabled​=​1

Update Yum
Run command:

$ yum update

Install Nginx
Run command:
$ yum install nginx

Test opening on your browser:

Windows

Download
Nginx comes pre-compiled for Windows which makes it extremely easy to get started. If it did
not come pre-compiled, you would need to have a compiler installed on your computer with a
full environment. Fortunately, this is not the case.

Download Nginx Windows here: ​http://nginx.org/en/download.html

Once you’ve downloaded Nginx for Windows, you can extract it to your folder of choice, we
recommend that you install it somewhere easily accessible such as ​C:\nginx​.

Verify Nginx Windows Installation
In order to make sure that the service is working with no problems, we recommend that you start
a command prompt window and type the following, make sure that you update the path if you’ve
installed it in another folder.

http://nginx.org/en/download.html

C:\nginx\nginx.exe

You should be able to go to http://localhost/ and you should see the “Welcome to Nginx” default
page. If you see that page, then we can be sure that Nginx has been installed properly. We will
now shut it down and install it as a service, to stop it, you can use this command.

C:\nginx\nginx.exe -s stop

Now, if you were using Nginx as a simple development server, you can use these simple
commands to start and stop the server as you need. However, if you will be using it as a
production server, you would want to install it as a ​Windows service​.

Configuration

Nginx

BEFORE START

Linux
No actions required.

Windows
Please be sure to use double-backslashes (​\\​) to define paths into nginx.conf and also be sure
you already have an ​error_log​ and ​pid​ directives defined.

SSL Certificates

Certificates and Encodings
At its core an X.509 certificate is a digital document that has been encoded and/or digitally
signed according to RFC 5280.

In fact, the term X.509 certificate usually refers to the IETF’s PKIX Certificate and CRL Profile of
the X.509 v3 certificate standard, as specified in RFC 5280, commonly referred to as PKIX for
Public Key Infrastructure (X.509).

X509 File Extensions
The first thing we have to understand is what each type of file extension is. There is a lot of
confusion about what DER, PEM, CRT, and CER are and many have incorrectly said that they
are all interchangeable. While in certain cases some can be interchanged the best practice is to
identify how your certificate is encoded and then label it correctly. Correctly labeled certificates
will be much easier to manipulat

Encodings (also used as extensions)

● DER​ = The DER extension is used for binary DER encoded certificates. These files may
also bear the CER or the CRT extension. Proper English usage would be “I have a
DER encoded certificate” not “I have a DER certificate”.

● PEM​ = The PEM extension is used for different types of X.509v3 files which contain
ASCII (Base64) armored data prefixed with a “—– BEGIN …” line.

Common Extensions

● CRT​ = The CRT extension is used for certificates. The certificates may be encoded as
binary DER or as ASCII PEM. The CER and CRT extensions are nearly synonymous.
Most common among *nix systems

● CER​ = alternate form of .crt (Microsoft Convention) You can use MS to convert .crt to
.cer (.both DER encoded .cer, or base64[PEM] encoded .cer) The .cer file extension is
also recognized by IE as a command to run a MS cryptoAPI command (specifically
rundll32.exe cryptext.dll,CryptExtOpenCER) which displays a dialogue for importing
and/or viewing certificate contents.

● KEY​ = The KEY extension is used both for public and private PKCS#8 keys. The keys
may be encoded as binary DER or as ASCII PEM.

The only time CRT and CER can safely be interchanged is when the encoding type can be
identical. (ie PEM encoded CRT = PEM encoded CER)

Configuring Nginx Certs
At ​/etc/nginx/nginx.conf, ​ and inside the​ server { .. } ​ block, use the
ssl_certificate ​and​ ssl_certificate_key ​like this example:

 ​ssl_certificate​ /usr/local/lm/tclweb/bin/lyris.net/lyris.net.pem;
 ​ssl_certificate_key
/usr/local/lm/tclweb/bin/lyris.net/lyris.net.key;

SSL Ciphers
At ​/etc/nginx/nginx.conf, ​ and inside the​ server { .. } ​ block, use the
ssl_prefer_server_ciphers ​and​ ssl_ciphers ​like this example:

 # enables server-side protection from BEAST attacks

 # http://blog.ivanristic.com/2013/09/is-beast-still-a-threat.html

 ​ssl_prefer_server_ciphers​ on;
 #ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3;

 ssl_protocols TLSv1.2 TLSv1.3;

 # ciphers chosen for forward secrecy and compatibility

 #

http://blog.ivanristic.com/2013/08/configuring-apache-nginx-and-opens

sl-for-forward-secrecy.html

 ​ssl_ciphers
'ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDS

A-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GC

M-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RS

A-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256

:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-SHA:

ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:ECDHE-RSA-AES256-SHA

:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-AES256-SHA256:DHE-R

SA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA

-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA256:AES25

6-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS';

For more information about ciphers please check ​this article​.

SSL TLVv1.2 only
At ​/etc/nginx/nginx.conf ​ use the ​ssl_protocols ​ to enable just ​TLSv1.2​.

Example:

ssl_protocols TLSv1.2;

Running as a Service

Linux
Type the following chkconfig command:
chkconfig nginx on

Windows
We downloaded from ​https://github.com/kohsuke/winsw/releases​ the last stable version (​2.10.1
- ​WindSW.NETCore31.x64.exe​) and copied it to the Nginx folder (​c:\nginx ​) as
nginxscv.exe​.

After download, copy, and rename the ​nginxsvc.exe​, you will need to create a service file
inside the Nginx (​c:\nginx​) folder, please be sure to create a file with the name
nginxsvc.xml ​with the following contents:

<service>

 <id>nginx</id>

https://comodosslstore.com/resources/ssl-cipher-suites-ultimate-guide/
https://github.com/kohsuke/winsw/releases

 <name>nginx</name>

 <description>nginx</description>

 <executable>c:\nginx\nginx.exe</executable>

 <logpath>c:\nginx\logs</logpath>

 <logmode>roll</logmode>

 <depend></depend>

 <startarguments></startarguments>

 <stoparguments>-s stop</stoparguments>

 <workingdirectory>c:\nginx</workingdirectory>

</service>

You are now ready to install the Windows service, you can proceed to run the following
command:

C:\nginx\nginxsvc.exe install

You can now proceed to manage the service from your service manager. The easiest and
fastest way to access it is to type the following in your command prompt:

services.msc

You should be all done at this point.

You have Nginx as a service and you can set it up to start automatically when it is booted with
your operating system!

After you click on the "Start" button you will see the status "Running"

and then you can open the browser at ​http://localhost​ to check if it is opening the default Nginx
page.

If you need to disable the Windows default port 80 (HTTP.sys), please run as "Administrator" at
the command line:

http://localhost/

net stop http /y

sc config http start= disabled

For more information please check this article:
http://www.devside.net/wamp-server/opening-up-port-80-for-apache-to-use-on-windows

HTTP to HTTPs redirection
At ​/etc/nginx/nginx.conf, ​ and inside the​ location /path { .. } ​ block, use the
return <http_answer_code> <url> ​like this example:

redirect all http traffic to https

server {

 listen 80 default_server;

 listen [::]:80 default_server;

 server_name my.servername.com;

 return 301 https://$host$request_uri;

}

Reverse Proxy
At ​/etc/nginx/nginx.conf, ​ and inside the​ location /path { .. } ​ block, use the
proxy_pass, proxy_set_header, proxy_cache_valid,

proxy_cache_use_stale_error, and proxy_redirect ​like this example:

 # ... the rest of your configuration

 location / {

 ​proxy_set_header​ Host $host;
 ​proxy_cache_valid​ 200 7d;
 ​proxy_cache_use_stale​ error timeout invalid_header updating
http_500 http_502 http_503 http_504;

 ​proxy_set_header​ X-Forwarded-Proto https;
 ​proxy_set_header​ X-Forwarded-For $proxy_add_x_forwarded_for;
 ​proxy_set_header​ Host $http_host;
 ​proxy_redirec​t off;

 proxy_pass http://url.to.your.service[:<port>]/;

 }

http://www.devside.net/wamp-server/opening-up-port-80-for-apache-to-use-on-windows

Listmanager

Web UI

Disable SSL
1. Edit your ​${LM_HOME}/tclweb/bin/tclhttpd.rc ​ file
2. Find this section

#########################

SSL Configuration

SSL_REQUEST - should the server ask for certificates from clients?

Config SSL_REQUEST 1

SSL_REQUIRE - should the server require certificates?

Config SSL_REQUIRE 1

3. Switch all to ​0 ​ (zero)

#########################

SSL Configuration

SSL_REQUEST - should the server ask for certificates from clients?

Config SSL_REQUEST 0

SSL_REQUIRE - should the server require certificates?

Config SSL_REQUIRE 0

4. Find this section

USE_SSL2 - Allow the use of SSL version 2

(You cannot get this with a "no patents" build of OpenSSL)

Config USE_SSL2 1

USE_SSL3 - Allow the use of SSL version 3

Config USE_SSL3 1

USE_TLS1 - Allow the use of TLS version 1

Config USE_TLS1 1

5. Switch them to 0 (zero)

USE_SSL2 - Allow the use of SSL version 2

(You cannot get this with a "no patents" build of OpenSSL)

Config USE_SSL2 0

USE_SSL3 - Allow the use of SSL version 3

Config USE_SSL3 0

USE_TLS1 - Allow the use of TLS version 1

Config USE_TLS1 0

6. Save the file
7. Restart LM

HTTP and HTTPs ports
8. Edit your ​${LM_HOME}/tclweb/bin/tclhttpd.rc ​ file
9. Find this section

port - the listening port for the server for HTTP requests.

The standard web port is 80.

Config port 80

https_port - the listening port for the server for HTTPS requests.

The standard SSL port is 443.

Config https_port 443

10. Switch all to ​8080 ​ and ​8443

port - the listening port for the server for HTTP requests.

The standard web port is 80.

Config port 8080

https_port - the listening port for the server for HTTPS requests.

The standard SSL port is 443.

Config https_port 8443

SOAP API
Unfortunately we can't assign a different port for SOAP API service so it always will run on port
82 (HTTP or HTTPS). It force us to use an path assignment for the SOAP service (​/_soap/​)
like

To enable it you just have to add a new entry above the "​location / {​" block to map it to the
LM SOAP API interface.

 location /_soap {

 proxy_set_header Host $host;

 proxy_cache_valid 200 7d;

 proxy_cache_use_stale error timeout invalid_header updating

http_500 http_502 http_503 http_504;

 proxy_set_header X-Forwarded-Proto https;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_redirect off;

 proxy_pass http://url.to.your.service:82/;

 }

Then it will be available at ​https://url.to.your.service/_soap/?wsdl ​.

Don't forget to disable your firewall access from the Internet to the LM TCP 82 port (SOAP) and
change your scripts to use the new URL based on SSL reverse proxy.

Tests

Application
1. Open the Chrome/Firefox

https://url.to.your.service/_soap/?wsdl

2. Open the Inspector

3. Open the Network Tab

4. Into the URL bar, type the LM URL to be tested using the http:// at the beginning

5. Check into the Network Tab if you got a 301 Redirect to the https:// url

6. Inform your login/password and click on the Login button

7. Check if the LM loaded without any alert at the URL bar

Rating
The Secure Sockets Layer (SSL) protocol is a standard for encrypted network communication.
We feel that there is surprisingly little attention paid to how SSL is configured, given its
widespread usage. SSL is relatively easy to use, but it does have its traps. This guide aims to
establish a straightforward assessment methodology, allowing administrators to assess SSL
server configuration confidently without the need to become SSL experts.

Complete Guide: ​SSL Server Rating Guide

Test
1. Open the SSL Labs website: ​https://www.ssllabs.com

2. Click at "Test your server"

https://github.com/ssllabs/research/wiki/SSL-Server-Rating-Guide
https://www.ssllabs.com/

3. At "Hostname", type your URL

4. Wait for the results

5. Check your rate

Invalidating the Test Cache
Just click at the "Clear Cache" link on the top of the page.

Example Configuration
Save these configurations into ​/etc/nginx/conf.d/default.conf ​, or at
C:\nginx\conf\nginx.conf ​ for Windows hosts - inside the ​http​ section, and check if it
conflicts with any other existent configuration.

1. Please also replace all variables placeholders, like ​%%NGINX_HTTP_PORT%% ​, to your
own values.

2. Please also fill the ​%%NGINX_SSL_CERT%% ​ and ​%%NGINX_SSL_KEYS%% ​ pointing to
your ​.CRT/.PEM​ and ​.KEY​ SSL certificates using the ​FULL PATH​ notation

a. In Linux use the normal notation like /etc/ssl/certificates.crt or
/etc/ssl/certificates.key

b. In Windows use the normal path location, just replacing slashes (​/​) by double
backslashes (​\\​) like ​C:\\Windows​ instead of ​C:/Windows​.

i. It must be done for all custom paths

Single file
server {

 listen %%NGINX_HTTP_PORT%% default_server;

 listen [::]:%%NGINX_HTTP_PORT%% default_server;

 server_name localhost;

 return 301 https://$host$request_uri;

}

server {

 listen %%NGINX_HTTPS_PORT%% ssl http2;

 listen [::]:%%NGINX_HTTPS_PORT%% ssl http2;

 server_name localhost;

 ssl_certificate %%NGINX_SSL_CERT%%;

 ssl_certificate_key %%NGINX_SSL_KEYS%%;

 # enable session resumption to improve https performance

 # http://vincent.bernat.im/en/blog/2011-ssl-session-reuse-rfc5077.html

 ssl_session_cache shared:SSL:50m;

 ssl_session_timeout 1d;

 ssl_session_tickets off;

 # Diffie-Hellman parameter for DHE ciphersuites, recommended 4096 bits

 ssl_dhparam /etc/nginx/conf.d/dhparam.pem;

 # enables server-side protection from BEAST attacks

 # http://blog.ivanristic.com/2013/09/is-beast-still-a-threat.html

 ssl_prefer_server_ciphers on;

 # disable SSLv3(enabled by default since nginx 0.8.19) since it's less secure then

TLS http://en.wikipedia.org/wiki/Secure_Sockets_Layer#SSL_3.0

 #ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3;

 ssl_protocols TLSv1.2 TLSv1.3;

 # ciphers chosen for forward secrecy and compatibility

 #

http://blog.ivanristic.com/2013/08/configuring-apache-nginx-and-openssl-for-forward-se

crecy.html

 ssl_ciphers

'ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA2

56:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA3

84:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE

-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-SHA

:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-

SHA256:DHE-RSA-AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC

3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:

AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS';

 # enable ocsp stapling (mechanism by which a site can convey certificate

revocation information to visitors in a privacy-preserving, scalable manner)

 # http://blog.mozilla.org/security/2013/07/29/ocsp-stapling-in-firefox/

 resolver 8.8.8.8 8.8.4.4;

 ssl_stapling on;

 ssl_stapling_verify on;

 ssl_trusted_certificate %%NGINX_SSL_CERT%%;

 # config to enable HSTS(HTTP Strict Transport Security)

https://developer.mozilla.org/en-US/docs/Security/HTTP_Strict_Transport_Security

 # to avoid ssl stripping https://en.wikipedia.org/wiki/SSL_stripping#SSL_stripping

 # also https://hstspreload.org/

 # comment this out if your backend service doesn't add this header

 # add_header Strict-Transport-Security "max-age=31536000; includeSubdomains;

preload";

 # ... the rest of your configuration

 location / {

 proxy_set_header Host $host;

 proxy_cache_valid 200 7d;

 proxy_cache_use_stale error timeout invalid_header updating http_500 http_502

http_503 http_504;

 proxy_set_header X-Forwarded-Proto https;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header Host $http_host;

 proxy_redirect off;

 proxy_pass http://%%LOCAL_IP%%:%%HTTP_PORT%%;

 }

 location /soap {

 proxy_set_header Host $host;

 proxy_cache_valid 200 7d;

 proxy_cache_use_stale error timeout invalid_header updating http_500 http_502

http_503 http_504;

 proxy_set_header X-Forwarded-Proto https;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_redirect off;

 proxy_pass https://%%LOCAL_IP%%:%%SOAP_PORT%%/;

 }

}

